
CSCI 1951-W Sublinear Algorithms for Big Data Fall 2020

Lecture 7: Dense Graph

Lecturer: Jasper Lee Scribe: Alessio Mazzetto

1 Dense Graph - Bipartiteness

In this lecture, we study the problem of testing whether a given dense graph G = (V,E)
is bipartite, in the dense graph model. As a reminder, a bipartition of V is a pair (V1, V2)
such that V1, V2 ⊆ V , V1 ∩ V2 = ∅, and V1 ∪ V2 = V . A graph G is bipartite if there exists a
bipartition of (V1, V2) of V such that E ∩ (V1 × V2) = ∅. The following definition will prove
useful.

Definition 7.1 Given a bipartition (T1, T2) of T , edge (u, v) is said to violate (T1, T2) if
both u and v are neighbor in T1 or T2, i.e. (u, v) ∈ T1 × T1 or (u, v) ∈ T2 × T2

Proposition 7.2 Suppose G = (V,E) is ε-far from bipartite. Then, for any bipartition of
V , there are at least O(εn2) edges that violate that bipartition.

Proof. The proposition immediately follows from the definition of ε-farness. In fact, if there
exists a bipartition (V1, V2) with only εn2/4 edges that violate that bipartition, we could
remove them and obtain a bipartite graph. This is not possible, as we assume that G is
ε-far from bipartite.

The previous proposition suggests a simple ε-tester algorithm to check whether a graph
is bipartite. The algorithm has query complexity O(n/ε), which is sublinear in the size of
the input, as a dense graph has size O(n2).

Algorithm 7.3 The algorithm operates as follows:

• Query O(n/ε) random pairs (i, j)

• Accept if and only if the queried subgraph is bipartite

Proposition 7.4 Algorithm 7.3 is a one-sided ε-tester for bipartiteness of dense graphs
with query complexity O(n/ε) and runtime O(n/ε).

Proof. Completeness: The algorithm trivially accepts all the graphs which are bipartite, as
every subgraph is still bipartite.

Soundness: Let m be the number of sampled edges in the first step of the algorithm.
Assume that G is ε-far from bipartite. We reject if and only if the queried subgraph is not
bipartite, which implies that for any bipartition (V1, V2), we sampled an edge e that violates
such bipartition, i.e. e ∈ V1 × V1 or e ∈ V2 × V2. Fix a bipartition (V1, V2). By Proposition
7.1, we know that there are at least O(εn2) edges that violate the bipartition. Hence, the

probability that we do not sample any of those edges is ≤
!
1− O(!n2)

O(n2)

"m
. By an union

bound over all possible 2n bipartitions, we have that:

P(Algorithm wrongly accepts |G is ε− far from bipartite)

=P(∀ bipartition (V1, V2), no sampled edges violate that bipartition |G is ε− far from bipartite)

≤(2n)(1−O(ε))m ≤ 1/3 ⇐= m = O(n/ε)

1

where the first inequality is due to an union bound over all possible bipartitions, and in the
second inequality we used the standard inequality that (1− ε) ≤ e−!. Hence, for a suitable
m = O(n/ε), the algorithm correcly rejects any graph G which is ε-far from bipartite with
probability at least 2/3.

The query complexity is O(n/ε) as we sampled that many edges. The time complexity is
O(n/ε), which is the time required to check whether the queried subgraph is bipartite.

It is possible to significantly improve upon the previous algorithm. In particular, it is
possible to obtain a one-sided ε-tester for bipartiteness of dense graphs with query com-
plexity Õ(1/ε4). While the algorithm is very simple and easy to implement, its analysis
requires some effort.

Algorithm 7.5 The algorithm operates as follows:

• Sample r = O(1
!2
log 1

!) random vertices.

• Query all
#
r
2

$
possible edges for the subgraph induced by the sample vertices.

• Accept if and only if the resulting subgraph is bipartite

Theorem 7.6 Algorithm 7.5 is a one-sided ε-tester for bipartiteness of dense graphs with
query complexity and time complexity equal to Õ(1/ε4).

The main idea of the proof of the previous theorem is the following (we focus on the
soundness, as completeness is trivial). For the sake of the analysis, we can view the first
step of the algorithm as the sampling of two disjoint sets of vertices:

• T of size t = O(1! log
1
!)

• S of size s = O(t/ε)

In the analysis, we will try to use the set T to enforce a bipartition on V , while the set S
is used to check whether there are edges violating such bipartition.

A first issue is that, unlike the biclique testing problem we saw last class, it is very
unclear how to obtain a canonical bipartition from the set T . Moreover, in the analysis,
we would like to get not only a bipartition of T but a bipartition of all the vertices V . As
a solution, we will consider all possible 2t bipartitions (T1, T2) of T (and then perform an
union bound over that), and for each of them we will associate a bipartition on V based on
the neighbors of T1 and T2.

The second issue with this approach is that we do not know how to handle vertices that
are not neighbor to T , when we generalise from a bipartition of T to one of V . To mitigate
the problem, we will show that, with high probability, the set T is neighbor to most of
the “high degree” vertices (in a sense formalised later). Since “most of the high degree
vertices” cover most of the edges on the graph (low degree vertices involve few edges by
definition, a small number of high degree vertices also involve few edges total), this implies
that any bipartition of V is “not far” from one that is generated from a bipartition of T
based on the neighbor information. Therefore it suffices to exploit Proposition 7.2 on these
2t bipartitions generated from T .

As a digression, the 2t bipartitions generated from T essentially form an ε-net over the
entire set of bipartitions on V , but we will not go into any further detail on this perspective.

The following definitions formally describes what is a high-degree vertex and when a set
T is neighbor to most of those vertices.

2

Definition 7.7 A vertex is said to be high degree if and only if its degree is ≥ εn/100.
T is said to be a good set if and only if it neighbours all but ≤ εn/100 of the high degree
vertices.

The sketch of the soundness analysis is the following. We fix a graph G that is ε-far
from bipartiteness, then we show:

1. the set T is good with very high probability (99%);

2. for any good T and for any bipartition of T , there are at least εn2/100 edges violating
that bipartition (this implies that the set S is likely to pick up on them);

3. conditioned on T being good, every bipartition of T is accepted with small probability
(we then union bound over all possible bipartitions 2t);

4. the analysis done with the two disjoint sets S and T still hold for Algorithm 7.5. In
particular, we will show that the algorithm does a stronger check than the one done
in the analysis.

The following proposition captures the intuition that T is likely to be good, that is, T
is neighbor to most of the high degree vertices with high probability. This is the step 1 of
the sketch of the analysis.

Proposition 7.8 T is good with probability ≥ 99%.

Proof. Fix a particular high degree vertex v ∈ V . Then, we have that:

P(v does not neighbour T) ≤
%
1− nε/100

n

&t

= (1− ε/100)t ≤ ε/10000

The last inequality is due to the fact that t = O
#
1
! log

1
!

$
. Let X be the number of vertices

that are not neighbours of T . By linearity of expectation, we have that EX = n · ε/10000.
By using Markov’s inequality, we have that:

P
!
X >

εn

100

"
≤ EX

εn/100
=

εn/10000

εn/100
= 1%

As stated previously, we will use the set S to check whether there are any edges that
violate the bipartition induced by T . This is possible if for each bipartition induced by T ,
there are a significant amount of edges that violate such a bipartition. We will show that if
G is ε-far from bipartite and T is good, then this is indeed the case. This will allow us to
claim that each bipartition of T is accepted with small probability (and then union bound
all over 2t bipartitions). This is the step 2 of the sketch of the analysis.

Proposition 7.9 Let G be ε-far from bipartite. Then, for any good T , and any bipartition
(T1, T2), there are at least ≥ εn2/100 edges that violate such bipartition.

Proof. Based on T , we construct a bipartition (V1, V2) of V as follows: we set V1 =
neighbor(T2) and V2 = V \ V1 (note that we could obtain an incomplete bipartition if
we set V2 = neighbor(T1)). As G is ε-far, by Proposition 7.2 there are at least ≥ εn2/2
edges violating (V1, V2). We now want to upper bound the number of edges that violate

3

(V1, V2) but not (T1, T2). Those edges are always going to be edges that do not neigh-
bor T . We count those edges by dividing them in two categories: edges that have high
degree endpoints, and edges that have low degree endpoints. In the first case, we have
that the number of edges that have high degree endpoints and not neighbor T is at most
≤ n · εn/100 = εn2/100, as n is the maximum degree of a high degree vertex and εn/100
and is an upper bound on the number of high degree vertices not neighboring T given that
T is good. In the second case, the total number of edges that have low degree endpoints
and not neighbor T is at most n · εn/100 = εn2/100, as n is an upper bound to the total
number of vertices that can be low degree, and εn/100 is an upper bound to the degree
of a low degree vertex. Hence, we have that the number of edges that violate (T1, T2) is
≥ εn2/2− 2 · εn2/100 > εn2/100.

We are now ready to prove Theorem 7.6. The following proof contain steps 3 and 4 of
the sketch.

Proof of Theorem 7.6. The completeness property is trivial. We will now prove the sound-
ness of the algorithm. Assume that G is ε-far from bipartite. The algorithm fails in two
cases: (1) T is not good, (2) T is good but there exists a bipartition of T without vi-
olating edges in T or S. Note that this is a pessimistic analysis, as we are saying that
the algorithm fails every time T is not good. By Proposition 7.8, we know that event (1)
happens with very small probability, therefore we focus on event (2). We fix a bipartition
(T1, T2) for a good T . By Proposition 7.9, we know there are at least εn2/100 edges that
violate this bipartition. This implies that there are at least εn2/100 − O(t2) − O(tn) =
εn2/100−O(1

!2
log2 1

!)−O(tn) ≥ εn2/200 edges e (last inequality is true for n big enough),
such that e violates the bipartition (T1, T2), but e has neither endpoint in T . In particular,
those are the edges that the set S is checking on (by checking all edges within S × S), as S
and T are disjoint.

If we sample s′ edges outside of T , the probability not finding an edge violating the
partition (T1, T2) is upper bounded by (1 − O(εn2)/O(n2))s

′
= O(1 − O(ε))s

′
. By union

bound over all the partition of T , we have that:

P(no edge violate any partition of T by sampling s′ edges outside of T)

≤O(2t) ·O(1−O(ε))s
′ ≤ 1/4 ⇐= s′ = O(t/ε)

The first inequality is due to a union bound, whereas the implication is due to the same
computations done for the analysis of Algorithm 7.5. Therefore, if S = O(s′), with proba-
bility at least 3/4 we will find a violating edge. By a union bound with the case of when
T is not good (1% probability), we have that with probability at least 2/3, the algorithm
correctly rejects an ε-far graph G.

Note that our analysis is done with two disjoint sets T of size t and S of size O(s′) =
O(t/ε). We observe that the actual algorithm pick O(s′) vertices and query all pairs among
those vertices. Clearly this is a stronger testing than the one done in the proof, hence the
analysis still holds.

This algorithm does not achieve the best query complexity for this problem, in fact there
exists a one-sided ε-tester for bipartiteness of dense graphs with query complexity equal to
Õ(1/ε3), which follows from the proof above.

As a side note, the concept of bipartite is strictly related with the concept of 2-
colorability of a graph. In fact, it’s straightforward to see that a graph is 2-colorable if

4

and only if it is bipartite. The problem is a special case of the more general k-colorability
problem.

Fact 7.10 The decision problem of determining whether a graph is k-colorable for k ≥ 3 is
NP-hard.

It is interesting to point out that based on the idea presented in the previous algorithm,
it is possible to build an ε-tester to determine whether a graph is k-colorable (we won’t go
into the details of the analysis)

Algorithm 7.11 The algorithm operates as follows:

1. Sample O(k
2

!3
log k) vertices uniformly at random, and query all the edges within these

vertices.

2. Check if induced subgraph is k-colorable.

As stated earlier, checking whether the induced subgraph is k-colorable is an NP-hard
problem, therefore Step 2 of this algorithm requires exponential time on the size of the
queried subgraph. However, since the queried subgraph has a small constant size (size
independent of n), the tester’s runtime is also independent of n.

5

